

Mathematics 2 Reference Sheet

Lines

Standard Form Ax + By = C

Slope-Intercept Form y = mx + b

Point-Slope Form $y - y_1 = m(x - x_1)$

Slope $m = \frac{y_2 - y_1}{x_2 - x_4}$

A, B, and C are constants, where $A \neq 0$ or $B \neq 0$.

m = slope

b = y-intercept

 (x_1, y_1) and (x_2, y_2) are 2 points.

Quadratics

General Form $ax^2 + bx + c = 0$

Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

a, b, and c are constants, where $a \neq 0$.

Coordinate Geometry

Midpoint $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Distance $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

 (x_1, y_1) and (x_2, y_2) are 2 points.

Area, Volume, and Surface Area of Polygons and Solids			
Triangle	$A = \frac{1}{2}bh$	A = area	
Parallelogram Trapezoid Regular Polygon Prism	$A = bh$ $A = \frac{1}{2}(b_1 + b_2)h$ $A = \frac{1}{2}ap$ $V = Bh$	 b = base h = height a = apothem p = perimeter V = volume B = area of base 	
Right Prism Circular Cylinder Right Circular Cylinder Pyramid Right Pyramid Circular Cone	$SA = 2B + Ph$ $V = \pi r^{2}h$ $SA = 2\pi r^{2} + 2\pi rh$ $V = \frac{1}{3}Bh$ $SA = B + \frac{1}{2}Ps$ $V = \frac{1}{3}\pi r^{2}h$	$SA = \text{surface area}$ $P = \text{perimeter of base}$ $r = \text{radius}$ $s = \text{slant height}$ $\pi \approx 3.14$	
Right Circular Cone Sphere	$SA = \pi r^2 + \pi rs$ $V = \frac{4}{3}\pi r^3$ $SA = 4\pi r^2$		
Circles			
Center-Radius Form Area	$(x - h)^2 + (y - k)^2 = r^2$ $A = \pi r^2$	center (h,k) r = radius	

Area $A = \pi r$ A = areaCircumference $C = \pi d = 2\pi r$ C = circumference $A = \frac{\theta}{360} \pi r^2$ Area of Sector d = diameter $\theta = \text{degree measure of} \\ \text{central angle}$ $\pi\approx 3.14$

Par

abol	as
------	----

axis of symmetry
$$x = h$$

focus $\left(h, k + \frac{1}{4a}\right)$

directrix

Major Axis Horizontal

Major Axis Vertical

Ellipses

foci

foci

Area

Hyperbolas

foci

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 $a, b = positive constants$ where $a > b$

 $(h \pm c, k)$

foci $(h, k \pm c)$

 $V = a(x - h)^2 + k$

 $x = k - \frac{1}{42}$

 $\left(h+\frac{1}{4a},k\right)$

 $y = h - \frac{1}{4a}$

 $(h \pm c, k)$

 $A = \pi ab$

V = k

 $x = a(v - k)^2 + h$

$$a^2$$
 b^2
 $(h, k \pm c)$
 $A = \pi ab$

 $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

$$(h \pm c, k)$$

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{a^2} = 1$$

 $c = \sqrt{a^2 - b^2}$

 $c = \sqrt{a^2 + b^2}$

A = area

 $\pi \approx 3.14$

a = constant(h,k) = vertex

Triangles

Law of Sines
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
Law of Cosines
$$c^2 = a^2 + b^2 - 2ab \cos C$$

Law of Cosines
$$C^2 = a^2 + b^2 - 2ab \cos \theta$$

Area of a Triangle Area =
$$\frac{1}{2}bc \sin A$$

= $\sqrt{s(s-a)(s-b)(s-c)}$

Pythagorean Theorem
$$a^2 + b^2 = c^2$$
, if $\angle C$ is a right angle

$$A \qquad c \qquad B$$

$$s = \text{semiperimeter} = \frac{(a+b+c)}{2}$$

Sequences and Series

Arithmetic Sequence
$$a_n = a_1 + (n-1)d$$

Arithmetic Series
$$s_n = \frac{n}{2}(a_1 + a_n)$$

Geometric Sequence
$$a_n = a_1(r^{n-1})$$

Finite Geometric Series
$$s_n = \frac{a_1 - a_1 r^n}{1 - r}$$
 where $r \neq 1$
Infinite Geometric Series $s = \frac{a_1}{1 - r}$ where $|r| < 1$

Combinations
$${}_{k}C_{m} = C(k,m) = \frac{k!}{(k-m)! \ m!}$$

Permutations
$${}_{k}P_{m} = P(k,m) = \frac{k!}{(k-m)!}$$

$$a_n = n$$
th term
 $n =$ term number

$$d =$$
 common difference $r =$ common ratio

$$s_n = \text{sum of the first } n \text{ terms}$$

 $s = \text{sum of all the terms}$

$$k =$$
 number of objects in the set $m =$ number of objects selected

Interest

Simple Interest
$$I = prt$$

Compound Interest

Compounded Interest

Continuously

$$I = prt$$

 $A = pe^{rt}$

$$A = p\left(1 + \frac{r}{n}\right)^{nt}$$

I = interest

$$t =$$
number of years

$$n =$$
 compound periods per year $e \approx 2.718$

Exponential Growth and Decay

$$N_t = N_0 (1 + r)^t$$
$$N_t = N_0 e^{rt}$$

after t time periods r = rate of growtht = time or number oftime periods

 N_{t} = value at time t or

Polar Coordinates and Vectors

Periodic

$$[r(\cos \theta + i \sin \theta)]^n = r^n(\cos n\theta + i \sin n\theta)$$

sion: Polar to $x = r \cos \theta$

De Moivre's Theorem

: Polar to
$$x = r \cos \theta$$

r Coordinates $y = r \sin \theta$

Conversion: Polar to
$$x = r \cos \theta$$

Rectangular Coordinates $y = r \sin \theta$

Conversion: Rectangular
$$r = \sqrt{x^2 + y^2}$$
, $\theta = \arctan \frac{y}{x}$, when $x > 0$

Inner Product of Vectors

Matrices

Determinant of a 2 × 2 Matrix
$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Determinant of a 3 × 3 Matrix
$$\det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & j \end{bmatrix} = a \cdot \det\begin{bmatrix} e & f \\ h & j \end{bmatrix} - b \cdot \det\begin{bmatrix} d & f \\ g & j \end{bmatrix} + c \cdot \det\begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

Inverse of a 2 × 2 Matrix
$$M^{-1} = \frac{1}{\det M} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 where $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$e \approx 2.718$

$$r=$$
 radius, distance from origin $\theta=$ angle measure in standard position

$$n = \text{exponent}$$

 $\theta = \arctan \frac{y}{x}$, when $x > 0$
 $\theta = \pi + \arctan \frac{y}{x}$, when $x < 0$

$$\begin{split} [r_1(\cos\theta_1+i\sin\theta_1)][r_2(\cos\theta_2+i\sin\theta_2)] = \\ r_1r_2[\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)] \end{split}$$

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 $\mathbf{a} = \langle a_1, a_2 \rangle$ vector in the plane $\mathbf{a} = \langle a_1, a_2, a_2 \rangle$ vector in space

Trigonometry

Sum and Difference Identities

$$\begin{aligned} & \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\ & \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\ & \tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \end{aligned}$$

 α , β , θ = angle measures in standard position

Double-Angle Identities

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

Half-Angle Identities

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}, \text{ where } \cos \alpha \neq -1$$

Miscellaneous

Distance, Rate, Time D = rt

Direct Variation

V = kx

r = rate

D = distance

(y varies directly with x)

t = time

Indirect Variation (y varies indirectly with x)

$$y = \frac{k}{x}$$

k = variation constant