
 Value Management Framework

1

10 Best Practices in Writing Requirements

Introduction

Requirements are the conditions or capabilities needed by a user to solve a business problem

or achieve an objective. An agency should prepare high level requirements to articulate the

“need” which can then be developed into business requirements. The need and business

requirements should be able to be traced back to the business case and project vision.

Good requirements do the following:

• Establish a common understanding between the sponsor, project manager stakeholders,

and technical team.

• Provide a roadmap for development

• Should be simple, verifiable, necessary, achievable and traceable.

Types of Requirements

Requirements can be divided into functional and non-functional requirements. Functional

requirements provide a high-level description of how a system or product should function from

the end user perspective. Functional requirements try to address both business and technical

requirement and include for whom the product is built, how it might be used, interactions and

guidelines to be followed. Non-functional requirements represent the qualities of the system

and constraints in which the system operates.

The requirements pyramid below shows the progression from the organization’s vision and

goals at the top to the business requirements that then become business “needs”.

Vision and
Goals

Business Process

Business Requirements,
Business Needs

2

Those needs define the requirements. They are then further refined into features, use cases,
scenarios and test cases.

Recommended practices in developing requirements are explained below.

1. Use a Basic, Best-practice Format

A basic requirement structure is Unique ID: Object + Provision/Imperative (shall) + Action +

Condition + [optional] Declaration of Purpose /Expected Occurrence (will). Use accepted

requirement sentence formats wherever possible. Consider using the EARS: The Easy

Approach to Requirements Syntax1 method which provides a number of proven patterns for

writing specific types of requirements, as shown in the table below.

Requirement Type Syntax Pattern

General2 or Ubiquitous The <system name> shall <system
response>.

Event Driven WHEN <trigger> <optional precondition> the
<system name>shall <system response>.

Unwanted IF <unwanted condition or event>, THEN the
<system name> shall <system response>.

State Driven WHILE <system state>, the <system name>
shall <system response>.

Optional Feature WHERE <feature is included>, the <system
name> shall <system response>.

Complex (Combinations of the above patterns)

1 Mavin et al.

2 A word about general requirements Many requirements that may seem general are really driven by some trigger or

condition. Rewriting the requirement in the unwanted behavior format makes the trigger-response nature of the

requirement more clear. Be sure to check all “general” requirements – especially if they’re functional requirements –

for hidden triggers. Most true general (or ubiquitous) requirements are non-functional.

Needs

Features

Use Cases

Scenarios

Test Cases

3

Ideally, every requirement statement (written from the user's perspective) should contain a user role

that benefits from the requirement, the desirable state the user role wants to achieve and a metric

that allows the requirement to be tested. Avoid speculation and drawing up wish lists of features that

are impossible to achieve.

Last, make sure you define only one requirement at a time. Don’t use conjunctions (and, or, also,

with) because these can cause developers to miss out on requirements. Split complex requirements

until each one can be considered a discreet test case.

2. Define Terms and Use them in a Standard Manner

Create a dedicated section toward the beginning of your requirements document to define

exactly how certain terms will be used within the document itself, and how they should be

interpreted when found in non-requirements documents referenced by the document. For

example:

• SHALL is used for binding requirements that must be verified and have an accompanying

method of verification.

• MUST denotes certain quality and performance requirements that must be verified and have

an accompanying method of verification. MUST is typically applied to non-functional

requirements.

• WILL is used as a statement of fact (informational), declaration of purpose, or expected

occurrence and is not binding

• SHOULD denotes an attribute, goal, or best practice which must be addressed by the

system design (informational) and is not binding. 3

The use of SHALL for functional requirements and MUST for non-functional requirements helps

easily distinguish between the two. Use exactly one provision or declaration of purpose (such

as shall) for each requirement, and use it consistently across all requirements. Strictly defining

your terms and adhering to your definitions will reduce conflict and confusion in interpreting your

requirements, and, with practice, will save you time in writing requirements.

3. Keep Functional Requirements Free of Design Details and Descriptions of Operations

Functional requirements should specify the required external output behavior of the system for a

stated set or sequence of inputs applied to its external interfaces. In other words, state WHAT

the system must do, not HOW it must do it. Constraints on manner of implementation should not

appear in functional requirements. They should be spelled out in very specific non-functional

requirements at the outset of the program. Keeping functional requirements free of design

details allows engineers to design the system in the most efficient manner available,

implementation to be modified without rewriting the requirement and reduces the possibility of

conflict between requirements due to incompatible implementation details. Ask yourself WHY do

3 These definitions are considered standard in the industry and can be applied to state projects. These terms are

collectively called “imperatives” in the IT industry.

4

you need the requirement. If you catch yourself mentioning field names, programming language

and software objects in the Requirements Specification Document, you’re in the wrong zone.

Likewise, avoid descriptions of operations. Ask “does the developer have control over this?”

Requirements that include “the user shall” are almost always operational statements, not

requirements.

4. Include Additional and Supporting Information

It is vitally important to separate the supporting information from the requirement statement.

Trying to weave complex supporting information or data into a requirement statement can make

the statement overly complex and unclear to the reader. Additional information can be

referenced in the following manner:

• Rationale statements can be used to reduce ambiguity in your requirements document.

They allow you to simplify your requirements statement while providing users with additional

information. A short and concise sentence is usually all that is needed to convey a single

requirement – but it’s often not enough to justify a requirement. Separating your

requirements from their explanations and justifications enables faster comprehension, and

makes your reasoning more evident. When a requirement’s rationale is visibly and clearly

stated, its defects and shortcomings can be more easily spotted, and the rationale behind

the requirement will not be forgotten. Rationale statements also reduce the risk of rework, as

the reasoning behind the decision is fully documented and thus less likely to be re-

rationalized.

• Assumptions should be articulated and you should ask yourself if the assumptions could

be validated.

• Directives are words or phrases that point to additional information which is external to the

requirement, but which clarifies the requirement. Directives typically employ phrases like “as

shown in” and “in accordance with,” and they often point to tables, illustrations or diagrams.

They may also reference other requirements or information located elsewhere in the

document.

• Exception scenarios are conditions in which a given requirement should not apply or

should be altered in some way. On the other hand, if multiple exception scenarios were

identified, it might be better to create a bulleted list of exceptions, to make the requirement

easier to read.

5. Be Clear in Your Wording

Requirements should be specific, rather than vague, but vagueness is epidemic in requirements

specifications. Customers may like a vague requirement, reasoning that if its scope is

unbounded, they can refine it later when they have a better idea of what they want. Authors and

engineers may not mind, since a slack requirement may appear to give them more “freedom” in

their implementation. All eventually suffer, however, when the implementation misses the mark

and extensive rework is required. To avoid vagueness:

• Do not use unspecific adjectives (weak words) such as easy, straightforward, or intuitive

5

• Do not express suggestions or possibilities (identified by might, may, could, ought)

• Use active voice (shall + present tense verb) and avoid passive voice (shall be + past

participle)

• Define precisely what the system needs to do (in functional requirements) or to be (in non-

functional requirements) in such terms that compliance can be readily observed, tested or

otherwise verified. Include tolerances for qualitative values.

• Do not use “to be determined” or “to be resolved”. Instead, include the current best

estimate and state the rationale as to why the value is an estimate.

• Don’t be swayed by those who want to keep requirements vague.

Keep in mind the costs of scrap and re-work while defining requirements. Also be mindful of the

following:

Weak Words/Unclear Terms – also called subjective, vague or ambiguous words – are

adjectives, adverbs and verbs that don’t have a concrete or quantitative meaning. Such words

are thus subject to interpretation. Weak words include:

Efficient, powerful, fast, easy, effective, reliable, compatible, normal, user-friendly, intuitive,

few, most, quickly, versatile, robust, timely, strengthen, enhance, flexible, large, small,

sufficient, safe, adequate, approximate, minimal impact, as appropriate, but not limited

to, be able to, be capable of, useable when required.

Define your requirements in precise, measurable terms. Don’t specify that a system or feature

will be intuitive, reliable or compatible; define WHAT will make it intuitive, reliable or compatible.

Passive Voice - Many adjectives that are also past participles of verbs – words like enhanced,

strengthened and ruggedized – are notorious weak words, because they sound like engineering

terms, but are weak in specificity. Changing from shall + passive to must + active clarifies the

requirement

Negative Requirements - Use negative specifications primarily for emphasis, in prohibition of

potentially hazardous actions. Then state the safety case in the rationale for the requirement.

Don’t use negative specification for requirements that can be restated in the positive. Substitute

shall enable for shall not prohibit, shall prohibit in place of shall not allow, and so on. Last, avoid

double negatives completely-- use shall allow instead of shall not prevent, for example.

Compatibility - If the system being designed must be compatible with other systems or

components, explicitly state the specific compatibility requirements. Don’t leave it up to the

hardware and software engineers to determine what will make the system they’re designing

“compatible” with a given device (and expect the test engineers to make the same

determination). It’s up to you to define what it means to be compatible with the device in

question.

6

6. Organize, Standardize and Templatize

Organize your requirements in a hierarchical structure. In component specifications, for

example, a functional hierarchy is often used, with very broad functional missions at the top

breaking down into sub-functions, and those sub-functions breaking down into successive tiers

of sub-functions.

Use industry accepted identifiers and ensure that each requirement in every requirement

document be tagged with a project-unique identifier. Requirements documents that do not

employ such an identifier system are not only difficult to read and reference, they make

traceability a nightmare.

Turn standardized sections into “boilerplate” to promote and facilitate consistency across

projects. This is a major benefit of templates. These sections tend to remain little changed from

project to project, and from team to team– evolving only slowly over time with changes in

methodology and lessons learned – thus providing a stable platform for consistent requirements

development, employee education and communication with customers.

A template should have, at a minimum, a cover page, section headings, essential guidelines for

the content in each section and a brief explanation of the version (change) management system

used to control changes made to the document. The template should also include standardized

sections covering topics like verb (imperative) application, formatting and traceability standards,

and other guidelines your organization follows in documenting requirements and managing its

requirements documentation.

7. Make Sure Each Requirement is Testable

Requirements should be stated in such a way that an objective test can be defined for it.

Writing your requirement with a specific test scenario in mind will help ensure that both design

and test engineers understand exactly what they have to do. A good practice for insuring

requirement testability, for example, is to specify a reaction time window for any output event

the software must produce in response to a given input condition. The verification or test

method, the means to test the fulfillment of the requirement, and the criteria for verification

should also be included.

8. Write from a User perspective and Vet Requirements with a Diverse Team

Consider the needs of all potential stakeholders who will interact with the system. The list of

these stakeholders may well go beyond what had been initially considered and should take into

consideration all relevant domain experts, and even users. Identify your stakeholders early,

consider their use levels, and write from their perspective.

Besides writing requirements from the perspective of a client or manager, evaluate

requirements with a diverse team. This team should consist of designers and developers who

will use the requirements to create the system, the testers who will verify compliance with the

requirements, engineers who design, maintain or manage other systems that will support or

interact with the new system, and end-user representatives. Any subsequent additions or

7

changes to the requirements should undergo a similar evaluation as part of a formal change

management system. This greatly increases the probability that the requirements will meet the

needs of all stakeholders. Make note of which users were heavily considered for each

requirement, so you can have that user provide focused feedback only on the requirements that

are relevant to them.

9. Make sure the Requirements are Complete

Complete requirements contain several components and you should check your final

requirements for completeness. Requirements include the following types:

• Functional

• Performance

• Interface

• Environment

• Training

• Personnel

• Operability and Safety/Security

• Appearance and Physical

Characteristics

• Design

Make sure all described functions are necessary, and together, sufficient to meet the system

needs, goals and objectives. Also consider reliability, maintainability and survivability, among

other factors.

10. Make Sure Requirements are Traceable

Traceability in this context is about relationships between requirements at the same or different

levels of detail, and between requirements and other lifecycle artifacts Each requirement should

be able to be traced to a parent requirement or business need or, if it’s at the top level, to the

project scope. Requirement Traceability helps you follow the life of a requirement (from idea to

implementation), see how requirements impact one another, and understand requirement

decomposition—from high level user needs to design specifications.

There are several different levels of traceability. Basic traceability establishes a relationship or

link between one or more elements. Typed traceability adds the relationship type with its

associated semantics. Rich traceability adds additional information on the traceability

relationship such as rationale and assumptions.

Once traceability has been established there are multiple ways in which it can be viewed and

reported on. The traceability matrix is the oldest and most commonly recognized method. The

matrix allows you to see the intersection between two sets of requirements and a check or cross

shows where a link exists but this method doesn’t scale particularly well since the matrix could

become very large. A traceability column allows you to pick a starting point, and display the

related systems requirements alongside the user requirement they are linked to. You can

choose how much detail of the linked requirement is displayed, and even make it recursive,

going down as many levels of requirements as you need/is practical to manage in a single view.

Graphical displays, such as the traceability tree, are great for getting a bigger picture view of

traceability rather than immediately focusing in on the details of a particular relationship. You

8

can explore the traceability tree, zooming in/out or collapsing/expanding parts of the tree, or

changing the focus (starting point) of the tree.

Traceability delivers value in your project by providing the context for a requirement (the

business WHY), and illustrating the audit trail (why a requirement exists) or compliance (which

requirement satisfies the regulation). It also helps show all the user requirements have been

covered and can highlight gaps or can reveal over-engineering or “gold plating”. Finally, it allows

for impact analysis so that, when one requirement changes or a design proves infeasible, you

can identify all the related requirements, designs, tests, and work items that are potentially

impacted by the change. This enables you to fully scope the impact of the changes.

