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Abstract— The increasing use of electronic health records 

(EHRs) and wearable devices has led to the creation of massive 

amounts of personal health data (PHD) that can be utilized for 

research and patient care. However, managing and integrating 

various types of PHD from different sources poses significant 

challenges, including data interoperability, data privacy, and data 

security. To address these challenges, this paper proposes a 

blockchain-based personal health knowledge graph for integrated 

health data management.  The proposed approach utilizes 

knowledge graphs to structure and integrate various types of PHD, 

such as EHR, sensing, and insurance data, to provide a 

comprehensive view of an individual's health. The proposed 

approach utilizes blockchain to ensure data privacy and security. 

By storing PHD on a decentralized blockchain platform, patients 

have full control over their data and can grant access to specific 

entities as needed providing enhanced privacy and security. 

Keywords— Blockchain, Personal Health Data, Knowledge 

Graphs, Data Interoperability, Privacy, Security, Wearable 

Devices, Electronic Health Records. 

I. INTRODUCTION 

In recent years, there has been a significant increase in the 
amount of health-related data generated in our everyday lives. 
This data comes from a wide range of sources and includes 
electronic health records (EHRs), wearable devices, health-
related apps, and social determinants of health. EHRs contain a 
wealth of information about a patient's health, including medical 
history, diagnoses, medications, and treatment plans. As more 
healthcare providers adopt electronic health record systems, the 
amount of EHR data generated continues to increase. Wearable 
devices such as smartwatches, fitness trackers, and medical 
devices generate a large amount of health-related data. These 
devices can collect data on physical activity, heart rate, sleep 
patterns, blood pressure, and other vital signs. With the 
increasing popularity of wearable devices, the amount of data 
generated continues to grow. Health-related apps are another 
source of data, providing individuals with a wide range of tools 
for managing their health. These apps can track diet and 
exercise, monitor symptoms, and provide reminders for 
medications and appointments. The data generated by these apps 
can provide valuable insights into an individual's health and can 
be integrated with other sources of health data. Social 
determinants of health, such as economic status, education, and 
social support, also play a significant role in an individual's 

overall health. These factors can be measured and analyzed to 
provide a comprehensive view of an individual's health and to 
identify potential health disparities. 

The amount of health-related data generated in our everyday 
lives is vast and continues to grow. This data provides valuable 
insights into an individual's health and can be utilized for 
research and patient care. However, managing and integrating 
various types of PHD from different sources poses significant 
challenges, including data interoperability, data privacy, and 
data security. 

To address these challenges, there is a need for a 
comprehensive and integrated approach to managing PHD. In 
this paper, we propose a personal health knowledge graph 
(PHKG), which organizes PHD in a graph format, where nodes 
represent entities such as patients, health practitioners, medical 
records, and wearable devices, and edges represent relationships 
between them. This approach enables the integration and 
analysis of various types of PHD, providing a comprehensive 
view of an individual's health. In addition, we propose a 
blockchain architecture to provide a secure and tamper-proof 
way of storing and sharing PHKG, while also enabling patients 
to have full control over their data and to share their data with 
trusted entities as needed. The use of smart contracts also 
enables the automation of access control and data sharing 
policies, providing enhanced privacy and security. 

Overall, the use of a personal health knowledge graph and 
blockchain technology can provide a comprehensive and secure 
approach to managing PHD, enabling the integration and 
analysis of various types of data for research and patient care, 
while also providing enhanced privacy and security for patients. 
Evaluations using use cases and simulation have demonstrated 
that the proposed system is secure, scalable, and enables 
effective data sharing and integration. 

II. RELATED WORK 

Blockchain technology [1] [2] has been gaining attention in 
the healthcare industry as a promising solution for the secure and 
efficient management of personal health data. Several studies 
have proposed the use of blockchain for personal health record 
(PHR) management, data sharing, and collaborative healthcare 
[3]. In this section, we discuss some of the related work in this 
domain.  
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Lee et al. [4] proposed a blockchain-based personal health 
record exchange system that leverages a permissioned 
blockchain to ensure privacy and scalability. The system allows 
patients to securely share their health records with healthcare 
providers while retaining control over their data. The authors 
showed that their system is more efficient and scalable 
compared to traditional centralized systems. Cernian et al. [5] 
proposed PatientDataChain that uses blockchain technology to 
create a decentralized healthcare infrastructure that incorporates 
a trust layer in the healthcare value chain. The system collects 
specific data from patients' medical records and integrates them 
into a unitary personal health records (PHR) system, where the 
patient is the owner of their data. Wazid et al. [6] proposed a 
secure communication mechanism for the exchange and storage 
of healthcare data using Blockchain-enabled Secure 
Communication Mechanism for Internet of Things-driven 
Personal Health Records (BIPHRS). They discussed various 
threats and security attacks on healthcare systems and compares 
the proposed BIPHRS with existing blockchain-enabled security 
schemes.  Chen et al. [7] proposed a blockchain-enabled 
framework for the earlier detection of diabetes using various 
machine learning classification algorithms, while maintaining 
the EHRs of patients in a secure manner. The framework 
combines symptom-based disease prediction, Blockchain, and 
interplanetary file system, with patient health information 
collected via wearable sensor devices. The information is then 
processed by an ML model and stored in the Blockchain with 
the approval of the patient and practitioner. 

At the same time, there has been increasing interest in the 
use of knowledge graphs for managing and integrating health 
data. Several studies have explored the use of knowledge graphs 
for clinical decision support and data integration[8][9][10]. For 
example, Shi et al.[11] studied the heterogeneous textual 
medical knowledge and proposed to organize and integrate the 
TMK into conceptual graphs. They designed a mechanism to 
automatically retrieve knowledge form the knowledge graph. 
Another study by Tal et al.[12] proposed a knowledge graph-
based system for disease risk prediction. The system integrates 
various data sources, including electronic health records, 
environmental data, and social media data, to generate risk 
prediction models.  Li et al. [13] proposed a systematic approach 
to construct medical knowledge graph from large scale EHRs. 
Their study used a big-data platform of a 3A-class hospital in 
China and the constructed health knowledge base contains 9 
entity types, totally 22,508 entities. 

In addition to clinical decision support and disease risk 
prediction, knowledge graphs have also been used for drug 
discovery and development[14][15]. The Linked Open Drug 
Data (LODD) cloud by Samwald et al.[16] is a knowledge graph 
that integrates information from various drug-related data 
sources, such as drug targets, pharmacological actions, and 
drug-drug interactions, to facilitate drug discovery and 
development. 

These studies demonstrate the potential of knowledge graphs 
for managing and integrating health data. However, there is still 
a need for further research to explore the scalability, privacy, and 
security aspects of using knowledge graphs in the healthcare 
domain. 

III. SYSTEM DESIGN 

The system architecture, illustrated in Fig. 1, involves 
various users, such as patients, doctors, health devices, and 
insurance agencies, who have different roles in terms of data 
ownership, production, and consumption. The proposed system 
utilizes a decentralized peer-to-peer (P2P) network that has a 
dual purpose: it provides a secure blockchain for system 
security, including authentication, authorization, and access 
control, and it also implements a P2P-based distributed storage 
to store users' personal health knowledge graph. To access the 
system, users must register through the blockchain's smart 
contract, and data access is also through the blockchain. 
Personal health knowledge graph data is divided into smaller 
parts and distributed across the P2P network. It is important to 
note that the personal health knowledge graph data is not stored 
in the blockchain itself. 

A. Personal Health Knowledge Graph 

The first step is to construct a high-level personal health 
ontology as the schema for the personal health knowledge graph. 
An ontology can provide a formalized and standardized way of 
representing and organizing the concepts and relationships 
within a particular domain, in this case, personal health. 
Constructing a high-level personal health ontology would 
involve defining the key concepts and relationships relevant to 
personal health, such as medical conditions, symptoms, 
treatments, medications, and healthcare providers [17][18]. This 
ontology could be used as a schema for the personal health 
knowledge graph, providing a standardized structure for 
organizing and representing personal health data.  For example, 
the ontology might include a concept of "diabetes," which would 
have relationships to other concepts such as "blood glucose 
levels," "insulin therapy," and "complications." Each of these 
concepts could then be represented as nodes in the personal 
health knowledge graph, with edges connecting them to other 
related concepts.  
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We follow and adopt the HL7 FHIR [19] standard to design 
the ontology. Having a standardized ontology can help to ensure 
consistency and interoperability across different sources of 
personal health data. It can also provide a framework for 
developing intelligent applications that can reason over personal 
health data and provide personalized insights and 
recommendations. We extended an HL7 FHIR-based ontology 
proposed in [20]. It represents the domain entities of a personal 
health record. To improve semantic interoperability and 
knowledge sharing, ontology’s entities were linked with classes 
from ontologies available on BioPortal. The connection was 
based on BioPortal’s PURL (Persistent Uniform Resource 
Locators) identifiers to establish a semantic link to existing 
medical vocabularies, such as SNOMED CT or LOINC. We 
expanded the ontology to include other aspects of a user, 
including profiles, lifestyle interventions, healthcare providers, 
and data generated by health-related wearable devices. For 
example, additional classes PhysicalActivity, Diet, 
SmokingStatus, and AlcoholConsumption, as well as their sub-
classes and properties, were added to reflect an individual's 
lifestyle. These classes and properties can provide additional 
information about an individual's lifestyle. Fig. 2. shows part of 
the ontology.  

The following step is to locate all available health data about 
an individual, including EHRs, medical test results, medication 
history, and personal health data such as symptoms, lifestyle 
choices, and family history, and wearable device data. These 
data can reside in healthcare providers, health tracking apps, and 
other sources. Once the data is collected, they need to be mapped 
with the ontology  to link to their schema, which enables 
interoperability across different systems and applications. 

Next, the integrated data is represented as a graph database, 
where each piece of data is a node in the graph and the 
relationships between the data points are represented as edges. 
For example, a person's medical conditions would be 
represented as nodes, with edges connecting them to related 
nodes such as medications, test results, and symptoms.  Here is 
an example of data in a personal knowledge graph presented in 
triple format using RDF syntax: 

<https://cs.ndsu.edu/PHKG/patient1> <http://schema.org/name> "John Smith". 
<https://cs.ndsu.edu/PHKG/patient1> <http://schema.org/birthDate> "1980-01-
01"^^<http://www.w3.org/2001/XMLSchema#date> . 
<https://cs.ndsu.edu/PHKG/patient1> <http://schema.org/gender> "male" . 
<https://cs.ndsu.edu/PHKG/patient1> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://schema.org/Person> . 
<https://cs.ndsu.edu/PHKG/patient1/condition1> <http://schema.org/name> 
"Diabetes" . 
<https://cs.ndsu.edu/PHKG/patient1/condition1> <http://schema.org/startDate> 
"2010-05-01"^^<http://www.w3.org/2001/XMLSchema#date> . 
<https://cs.ndsu.edu/PHKG/patient1/condition1> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://cs.ndsu.edu/PHKG/Condition> .<https://cs.ndsu.edu/PHKG/patient1> 
<http://cs.ndsu.edu/PHKG/hasCondition> 
<https://cs.ndsu.edu/PHKG/patient1/condition1> . 
 
<https://cs.ndsu.edu/PHKG/patient1/medication1> <http://schema.org/name> 
"Metformin" . 
<https://cs.ndsu.edu/PHKG/patient1/medication1> 
<http://schema.org/startDate> "2010-05-
01"^^<http://www.w3.org/2001/XMLSchema#date> . 
<https://cs.ndsu.edu/PHKG/patient1/medication1> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://cs.ndsu.edu/PHKG/Medication> . 
<https://cs.ndsu.edu/PHKG/patient1> 
<http://cs.ndsu.edu/PHKG/hasMedication> 
<https://cs.ndsu.edu/PHKG/patient1/medication1> . 

In this example, we have a patient identified by the URI 
"https:// cs.ndsu.edu/PHKG /patient1" who has a name, birth 
date, and gender. The patient also has a condition and a 
medication. Each of the entities in the graph (patient, condition, 
and medication) have a type specified by the RDF "type" 
predicate. The patient has a type of "Person", while the 
condition and medication have types specified by the ontology. 
The patient is linked to their condition and medication using 
predicates "hasCondition" and "hasMedication", respectively. 

B. Authentication and Access Control  

  Blockchain is used to provide secure authentication and 
access control for personal health knowledge graphs. The whole 
system is powered by Ethereum, each user maintains a EOA, 
hence each user is uniquely identified by their unique Ethereum 
address. This identity can be used to verify the user's identity 
when accessing the personal health knowledge graph. Different 
users may have different roles, such as patient, doctor, insurance 
agency, etc. When a user logs in to the system, their digital 
identity is checked against the blockchain to ensure that they are 
authorized to access the system. In addition to user 
authentication, users’ wearable devices can also be 
authenticated using blockchain. Each device is given a unique 
digital identity that is stored on the blockchain. When a device 
connects to the system, its digital identity is checked against the 
blockchain to ensure that it is authorized to access the system.  

Once a user or sensing device is authenticated, access control 
policies can be enforced using smart contracts on the 
blockchain. These policies specify which parts of the personal 

 

Fig. 2 A snapshot the ontology. (Partically adopted from [20]) 



health knowledge graph each user or device is authorized to 
access. For example, a doctor may be authorized to access a 
patient's medical records, while a fitness tracker may only be 
authorized to access data related to exercise and physical 
activity.  

For example, a doctor who is treating a patient with diabetes 
can query the personal health knowledge graph to retrieve the 
patient's blood sugar levels, medication history, and other 
relevant data. This information can help the doctor to make 
informed decisions about the patient's treatment plan and 
monitor their progress over time.  To do that,  the doctor initiates 
a request to access a patient's health data by creating a 
transaction on the blockchain network that invokes the 
authorization request function on the smart contract. The 
authorization request function takes in the Ethereum address of 
the doctor and the Ethereum address of the patient. The function 
checks if the doctor is authorized to access the patient's data by 
looking up the patient's permissions on the personal health data. 
If the doctor is authorized, the function creates an approve event 
and sends it to all the nodes on the blockchain network. The 
event contains a token which is hashed using the Ethereum 
address of the doctor and a nonce, the event also contains an 
expiration time for the token. The doctor then uses this token to 
send a signed message containing the token using the doctor’s 
private Ethereum key to the resource system. The system can 
query the smart contract and get the details such as assigned 
token, role, and the doctor’s Ethereum address. The signed 
message helps the system verifies the doctor’s identity and to 
allow access to the system based on the role. The doctor can then 
query the personal health knowledge graph to retrieve the 
patient's health data that is relevant to their treatment. 

Fig. 3 shows the sequence diagram of this communication 
process.   

C. Smart Contract  

In our blockchain-based PHKG network, smart contracts are 
used to automate the process of registration, authentication, and 
access control of individual users, health data producers, and 
data consumers. A smart contract is a self-executing code that 
runs on the blockchain network.  

To register individual users, health data producers, and data 
consumers, we can create a smart contract that stores the 
necessary information, such as user identification, contact 
information, and access permissions. To authenticate people and 
institutes, we can use the Ethereum network's public-key 
infrastructure to verify user identities. The smart contract can 
include a function that verifies a user's identity by checking their 
public key against a stored list of authorized public keys. To 
control access to health data, we can use the smart contract to 
manage access permissions for users and data producers. The 
smart contract can include functions that allow authorized users 
to grant or revoke access permissions for specific data. For 
example, a function could be created to grant a data consumer 
access to a specific health data record.  

In our system, we use the Ethereum blockchain platform to 
deploy smart contract. Our smart contract is written and tested 
with Solidity and Remix. It implemented the following 
functions: 

• registerDataOwner(): registers individual personal health data owners, i.e., 
person whose health data is being shared. 

• registerDataProducer(): register institutes or devices, such as clinics, labs, 
doctors, and wearable devices, that produce health data. 

• registerDataConsumer(): register the health data consumers such as doctors, 
insurance agents, data owner’s family members, etc. 

• getAccess_Producer():data producer execute the authorize function to 
obtain the authorization token from the smart contract. 

• getAccess_Consumer(): data consumers execute the authorize function to 
obtain the authorization token from the smart contract. 

• verifyAccess(): used by the resource system to get token, role, and access 
rules from the smart contract to verify a producer or consumer’s identity. 

Fig. 4 shows the smart contract written in Solidity language. 
The function getAccess_Consumer allows a data consumer to 
request authorization to access a patient's data. The function 
checks if the requesting data consumer is authorized by the 
patient to access their data by verifying if the requesting data 
consumer's address is present in the patientToDataUserMapping 
array for the patient's address. If the data consumer is authorized, 
a token is generated and associated with the data consumer's 
address and role, and emitted as an event using the tokenEvent 
function.  

 Smart contracts play a critical role in our system as they 
eliminate the need for intermediaries and provide a secure and 
transparent platform for data sharing. They automate the process 
of verifying and executing the contract terms, reducing the risk 
of fraud and ensuring that the terms are enforced as intended. 
Smart contracts also ensure that the personal health data is only 
accessible to authorized entities, which enhances data privacy 
and security. Overall, smart contracts provide a reliable and 
secure platform for the sharing of personal health data in a 
transparent and auditable manner. 

 

Fig. 3 A sequence diagram of the data access communication process  



D. Distributed Graph Storage  

The PHKG is broken down into smaller chunks of data, such 

as triples, and each chunk can be assigned a unique identifier. 
As shown in Fig. 5, the chunks of data are then stored across 
multiple chunk servers, i.e., P2P nodes, to ensure fault tolerance 
and availability. The metadata for the PHKG is stored in the 
name node. This includes information such as the name of the 
graph, the size of the graph, and the location of the chunk 
servers. To facilitate faster retrieval of data, an DHT-based 
indexing is put in place to allow for fast lookup of data based on 
the unique identifiers assigned to each chunk. To ensure data 
durability, the data is replicated across multiple chunk servers, 
and backup mechanisms are used to recover from failures. 
Access control is implemented using the aforementioned smart 
contract implemented in the blockchain. P2P-based distributed 
storage can provide an efficient and scalable way to store a 
knowledge graph by distributing the data across multiple nodes 
in the network. This can improve fault tolerance, data 
availability, and data access speeds while ensuring data security 
and integrity. 

 

IV. EVALUATION 

We deployed the proposed mechanism over an Ethereum 
blockchain network. In the first set of experiments, we see how 
blockchain and smart contracts protect the privacy of users’ data 
and improve the system’s security. Then we evaluate the 
performance of the decentralized access control, query, and 
storage system in terms of scalability, load balancing, and fault 
tolerance. 

A. Access Control Verification 

1) Smart contract use case testing 

In this case, John is a patient at John Hopkins Hospital. He has 

opted to use a proposed blockchain-based personal health 

knowledge graph to securely and decentrally store and share all 

of his health data. As shown in Fig. 6, John has registered with 

the application using his Ethereum address (0xAb8…35cb2), 

and all his data generated during his hospital visits is safely 

stored and accessible through the application.  

 

Fig. 6. John was successuflly registered as the data owner. 

John has a new health provider Dr. Johnson with an Ethereum 

Address (0x4B2…C02db). John registers Dr. Johnson and 

provides him a doctor’s role (Fig. 7).   

 

Fig. 7. Dr. Johnson was successuflly registered as the data consumer. 

Dr. Johnson can access John’s health data by interacting with 

the smart contract and receives a token, as shown in Fig. 8. The 

token obtained through the authorization process can be used 

by the doctor (authorized data consumer) to access the resource 

system where John’s (patient) data is stored securely. 
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Fig. 5. P2P-based distributed PHKG storage 

 

Fig. 4. A snippet of the proposed smart contract.  



 

Fig. 8. Dr. Johnson was successuflly authrorized to accesss John’s data. 

An unauthorized party with Ethereum address (0x5c6…21678) 

tries to access John’s data will be denied by the smart contract 

as shown in Fig. 9. 

 
Fig. 9. Unauthorized party was denied with  accesss of John’s data. 

2) Cost anlaysis 
 To understand the cost of smart contract operations, a 
prototype contract was created and deployed using Remix on the 
Ethereum test network. The cost of deploying the contract and 
executing the functions on the contract were analyzed. As shown 
in Table 1, transactions record the cost in gas in the Ethereum 
ecosystem. Gas is the fee required to execute a transaction on 
the Ethereum platform. The transaction cost varies depending on 
the complexity of the function being executed. The highest cost 
was associated with the contract creation transaction, while the 
function "verifyAccess" is a view function and does not cost 
anything if called externally. It is important to consider the cost 
of smart contract operations to ensure that the system is efficient 
and cost-effective to use for all users.  

Table I. Transaction cost 
Functions Gas Used 

Contract Creation 2445488 

registerDataOwner 67837 

registerDataConsumer 67837 

getAccess_Consumer 62723 

verifyAccess 0.0 

B. Security Analysis  

This section explains how our framework utilizes the 
blockchain to ensure the security of the entire system and 
prevent attacks. 

• Denial of Service attack: All devices interacting with the 
smart contract in the Ethereum ecosystem require 
payments in the form of gas. This helps in restricting the 
flooding of requests to the smart contract and hence secures 
the platform from Denial-of-Service attack. 

• MITM and Replay Attack : User sends token signed with 
private key to the resource system during interaction. 
Resource system deciphers token using user's public key to 
ensure authenticity. Public-private key ensures elimination 
of MITM and replay attacks in the system. 

• Integrity: The smart contract on the Ethereum blockchain 
ensures data received from the contract is tamper-proof, 
providing evidence of integrity. 

• Authorization: The smart contract on the Ethereum 
platform is also responsible for authorizing users in any 
off-chain communications to use any service. Users are 
given tokens that they use during off-chain 
communications. Additionally, solidity modifiers and 
logic have been added to restrict access and allow only 
valid devices to execute a particular function, guarding 
against the reentrancy attack. 

C. Network Performance   

We also deployed graph-based data over the P2P storage 
network. We measured the system’s performance in terms of 
scalability, load balancing, and fault tolerance. 

We compared the P2P distributed PHKG system’s network 
communication overhead (bytes per node) with a centralized 
storage system.  As illustrated in Fig. 10, as the number of users 
of the system increases, the system’s overhead increases. This 
increase is dramatical for the centralized system. While the P2P 
nodes’ overhead is much lower for P2P system with 50 nodes 
and 1000 nodes. For the P2P system with 1000 nodes the 
overhead is so small that its performance line almost touches the 
x-axis. These experiments demonstrate the scalability of the P2P 
system. 

 

Fig. 10. Number of users (patients) vs. avg message overhead per server (node). 

 Fig. 11 shows the distribution of communication load of a 
P2P network with 500 nodes. We randomly generated data 
access requests. For simplicity, we only generate “read” 
requests. As shown in the figure, communication overhead is 
basically balanced among the P2P nodes mainly ranging from 
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10000 to 30000 bytes.  These experiments illustrate the load 
balancing properties of the system. 

 

Fig. 11. Nodes’ communication overhead distribution 

 As presented in the previous section, to ensure data 
availability, in the P2P-based distributed PHKG storage, data is 
replicated across multiple chunk servers. We tested the data 
availability of the system. In this experiment, each data has three 
replicas, i.e., each data chunk is replicated in three P2P nodes. 
The network size is 500. Fig. 12 shows the success rate of the 
access requests with respect to the node drop rate. The data 
availability keeps being 100% when the node’s drop rate is 
below 30%. For the network of 500 nodes, even 150 nodes die 
or leave the system, the network still can provide 100% data 
availability. These experiments show the fault tolerance of the 
system. 

 

Fig. 12. Data availability of the PHKG storage vs the network’s node drop rate 

V. CONCLUSIONS 

 The amount of health-related data generated from various 
sources continues to increase, providing valuable insights into 
an individual's health. However, managing and integrating this 
data poses significant challenges, including data 
interoperability, privacy, and security. To address these 
challenges, we propose a personal health knowledge graph that 
organizes PHD in a graph format, enabling the integration and 
analysis of various types of data for a comprehensive view of an 
individual's health. Furthermore, we suggest a blockchain 
architecture to provide a secure and tamper-proof way of storing 
and sharing PHKG, allowing patients to have full control over 
their data and to share it with trusted entities as needed. The use 
of smart contracts also enables the automation of access control 
and data sharing policies, providing enhanced privacy and 
security. The proposed system has been evaluated using use 
cases and simulation, and it has been shown to be secure, 
scalable, and enables effective data sharing and integration.  
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