
Chapter 3

Motion in Two and Three Dimensions

3.1 The Important Stuff

3.1.1 Position

In three dimensions, the location of a particle is specified by its location vector, r:

r = xi + yj + zk (3.1)

If during a time interval ∆t the position vector of the particle changes from r1 to r2, the
displacement ∆r for that time interval is

∆r = r1 − r2 (3.2)

= (x2 − x1)i + (y2 − y1)j + (z2 − z1)k (3.3)

3.1.2 Velocity

If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity
for that interval is

v =
∆r

∆t
=

∆x

∆t
i +

∆y

∆t
j +

∆z

∆t
k (3.4)

As before, a more interesting quantity is the instantaneous velocity v, which is the limit
of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative
of the position vector r:

v =
dr

dt
(3.5)

=
d

dt
(xi + yj + zk) (3.6)

=
dx

dt
i +

dy

dt
j +

dz

dt
k (3.7)

can be written:
v = vxi + vyj + vzk (3.8)
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where

vx =
dx

dt
vy =

dy

dt
vz =

dz

dt
(3.9)

The instantaneous velocity v of a particle is always tangent to the path of the particle.

3.1.3 Acceleration

If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for
that period is

a =
∆v

∆t
=

∆vx

∆t
i +

∆vy

∆t
j +

∆vz

∆t
k (3.10)

but a much more interesting quantity is the result of shrinking the period ∆t to zero, which
gives us the instantaneous acceleration, a. It is the time derivative of the velocity vector v:

a =
dv

dt
(3.11)

=
d

dt
(vxi + vyj + vzk) (3.12)

=
dvx

dt
i +

dvy

dt
j +

dvz

dt
k (3.13)

which can be written:
a = axi + ayj + azk (3.14)

where

ax =
dvx

dt
=

d2x

dt2
ay =

dvy

dt
=

d2y

dt2
az =

dvz

dt
=

d2z

dt2
(3.15)

3.1.4 Constant Acceleration in Two Dimensions

When the acceleration a (for motion in two dimensions) is constant we have two sets of
equations to describe the x and y coordinates, each of which is similar to the equations in
Chapter 2. (Eqs. 2.6—2.9.) In the following, motion of the particle begins at t = 0; the
initial position of the particle is given by

r0 = x0i + y0j

and its initial velocity is given by

v0 = v0xi + v0yj

and the vector a = axi + ayj is constant.

vx = v0x + axt vy = v0y + ayt (3.16)

x = x0 + v0xt + 1
2
axt

2 y = y0 + v0yt + 1
2
ayt

2 (3.17)

v2
x = v2

0x + 2ax(x − x0) v2
y = v2

0y + 2ay(y − y0) (3.18)

x = x0 + 1
2
(v0x + vx)t y = y0 + 1

2
(v0y + vy)t (3.19)

Though the equations in each pair have the same form they are not identical because the
components of r0, v0 and a are not the same.
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3.1.5 Projectile Motion

When a particle moves in a vertical plane during free–fall its acceleration is constant; the
acceleration has magnitude 9.80 m

s2
and is directed downward. If its coordinates are given by

a horizontal x axis and a vertical y axis which is directed upward, then the acceleration of
the projectile is

ax = 0 ay = −9.80 m
s2

= −g (3.20)

For a projectile, the horizontal acceleration ax is zero!!!

Projectile motion is a special case of constant acceleration, so we simply use Eqs. 3.16–
3.19, with the proper values of ax and ay.

3.1.6 Uniform Circular Motion

When a particle is moving in a circular path (or part of one) at constant speed we say that
the particle is in uniform circular motion. Even though the speed is not changing, the

particle is accelerating because its velocity v is changing direction.
The acceleration of the particle is directed toward the center of the circle and has mag-

nitude

a =
v2

r
(3.21)

where r is the radius of the circular path and v is the (constant) speed of the particle.
Because of the direction of the acceleration (i.e. toward the center), we say that a particle
in uniform circular motion has a centripetal acceleration.

If the particle repeatedly makes a complete circular path, then it is useful to talk about
the time T that it takes for the particle to make one complete trip around the circle. This
is called the period of the motion. The period is related to the speed of the particle and
radius of the circle by:

T =
2πr

v
(3.22)

3.1.7 Relative Motion

The velocity of a particle depends on who is doing the measuring; as we see later on it is
perfectly valid to consider “moving” observers who carry their own clocks and coordinate
systems with them, i.e. they make measurements according to their own reference frame;
that is to say, a set of Cartesian coordinates which may be in motion with respect to another
set of coordinates. Here we will assume that the axes in the different system remain parallel
to one another; that is, one system can move (translate) but not rotate with respect to
another one.

Suppose observers in frames A and B measure the position of a point P . Then then if
we have the definitions:

rPA = position of P as measured by A

rPB = position of P as measured by B
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rBA = position of B’s origin, as measured by A

with v’s and a’s standing for the appropriate time derivatives, then we have the relations:

rPA = rPB + rBA (3.23)

vPA = vPB + vBA (3.24)

For the purposes of doing physics, it is important to consider reference frames which move
at constant velocity with respect to one another; for these cases, vBA = 0 and then we find
that point P has the same acceleration in these reference frames:

aPA = aPB

Newton’s Laws (next chapter!) apply to such a set of inertial reference frames. Observers
in each of these frames agree on the value of a particle’s acceleration.

Though the above rules for translation between reference frames seem very reasonable, it
was the great achievement of Einstein with his theory of Special Relativity to understand
the more subtle ways that we must relate measured quantities between reference frames. The
trouble comes about because time (t) is not the same absolute quantity among the different
frames.

Among other places, Eq. 3.24 is used in problems where an object like a plane or boat
has a known velocity in the frame of (with respect to) a medium like air or water which itself

is moving with respect to the stationary ground; we can then find the velocity of the plane
or boat with respect to the ground from the vector sum in Eq. 3.24.

3.2 Worked Examples

3.2.1 Velocity

1. The position of an electron is given by r = 3.0ti − 4.0t2j + 2.0k (where t is in
seconds and the coefficients have the proper units for r to be in meters). (a)
What is v(t) for the electron? (b) In unit–vector notation, what is v at t = 2.0 s?
(c) What are the magnitude and direction of v just then? [HRW5 4-9]

(a) The velocity vector v is the time–derivative of the position vector r:

v =
dr

dt
=

d

dt
(3.0ti − 4.0t2j + 2.0k)

= 3.0i − 8.0tj

where we mean that when t is in seconds, v is given in m
s
.
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(b) At t = 2.00 s, the value of v is

v(t = 2.00 s) = 3.0i − (8.0)(2.0)j = 3.0i − 16.j

that is, the velocity is (3.0i− 16.j) m
s
.

(c) Using our answer from (b), at t = 2.00 s the magnitude of v is

v =
√

v2
x + v2

y + v2
z =

√

(3.00 m
s
)2 + (−16. m

s
)2 + (0)2 = 16. m

s

we note that the velocity vector lies in the xy plane (even though this is a three–dimensional
problem!) so that we can express its direction with a single angle, the usual angle θ measured
anti-clockwise in the xy plane from the x axis. For this angle we get:

tan θ =
vy

vx

= −5.33 =⇒ θ = tan−1(−5.33) = −79◦ .

When we take the inverse tangent, we should always check and see if we have chosen the
right quadrant for θ. In this case −79◦ is correct since vy is negative and vx is positive.

3.2.2 Acceleration

2. A particle moves so that its position as a function of time in SI units is
r = i + 4t2j + tk. Write expressions for (a) its velocity and (b) its acceleration as
functions of time. [HRW5 4-11]

(a) To clarify matters, what we mean here is that when we use the numerical value of t in
seconds , we will get the values of r in meters. Since the velocity vector is the time–derivative
of the position vector r, we have:

v =
dr

dt

=
d

dt
(i + 4t2j + tk)

= 0i + 8tj + k

That is, v = 8tj + k. Here, we mean that when we use the numerical value of t in seconds,
we will get the value of v in m

s
.

(b) The acceleration a is the time–derivative of v, so using our result from part (a) we have:

a =
dv

dt

=
d

dt
(8tj + k)

= 8j
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So a = 8j, where we mean that the value of a is in units of m
s2

. In fact, we should really
include the units here and write:

a =
(

8 m
s2

)

j

3. A particle moving with an initial velocity v = (50 m
s
)j undergoes an acceleration

a = [35m/ s2 + (2m/ s5)t3)i + [4m/ s2
− (1m/ s4)t2]j. What are the particle’s position

and velocity after 3.0 s, assuming that it starts at the origin? [FGT2 3-20]

In the problem we are given the acceleration at all times, the initial velocity and also the
initial position. We know that at t = 0, the velocity components are vx = 0 and vy = 50 m

s

and the coordinates are x = 0 and y = 0.
From the acceleration a we do know something about the velocity. Since the acceleration

is the time derivative of the velocity:

a =
dv

dt
,

the velocity is the anti-derivative (or “indefinite integral”, “primitive”. . . ) of the accelera-
tion. Having learned our calculus well, we immediately write:

v =
[

35t +
1

2
t4 + C1

]

i +
[

4t −
1

3
t3 + C2

]

j

Here, for simplicity, I have omitted the units that are supposed to go with the coefficients.
(I’m not supposed to do that!) Just keep in mind that time is supposed to be in seconds ,
length is in meters. . .

Of course, when we do the integration, we get constants C1 and C2 which (so far) have not
been determined. We can determine them using the rest of the information in the problem.
Since vx = 0 at t = 0 we get:

35(0) + 1
2
(0)4 + C1 = 0 =⇒ C1 = 0

and

4(0) − 1
3
(0)3 + C2 = 50 =⇒ C2 = 50

so the velocity as a function of time is

v =
[

35t +
1

2
t4
]

i +
[

4t −
1

3
t3 + 50

]

j

where t is in seconds and the result is in m
s
.

We can find r as a function of time in the same way. Since

v =
dr

dt
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then r is the anti-derivative of v. We get:

r =
[

35

2
t2 +

1

10
t5 + C3

]

i +
[

2t2 −
1

12
t4 + 50t + C4

]

j

and once again we need to solve for the constants. x = 0 at t = 0, so

35

2
(0)2 +

1

10
(0)5 + C3 = 0 =⇒ C3 = 0

and y = 0 at t = 0, so

2(0)2
−

1

12
(0)4 + 50(0) + C4 = 0 =⇒ C4 = 0

and so r is fully determined:

r =
[

35

2
t2 +

1

10
t5
]

i +
[

2t2 −
1

12
t4 + 50t

]

j

Now we can answer the questions.
We want to know the value of r (the particle’s position) at t = 3.0 s. Just plug in!

x(t = 3.0 s) =
35

2
(3.0)2 +

1

10
(3.0)5 = 181m

and

y(t = 3.0 s) = 2(3.0)2
−

1

12
(3.0)4 + 50(3.0) = 161m .

The components of the velocity at t = 3.0 s are

vx(t = 3.0 s) = 35(3.0) + 1
2
(3.0)4 = 146 m

s

and
vy(t = 3.0 s) = 4(3.0) − 1

3
(3.0)3 + 50 = 53 m

s
.

Here we have been careful to include the proper (SI) units in the final answers because
coordinates and velocities must have units .

3.2.3 Constant Acceleration in Two Dimensions

4. A fish swimming in a horizontal plane has a velocity v0 = (4.0i + 1.0j) m
s

at
a point in the ocean whose position vector is r0 = (10.0i − 4.0j)m relative to a
stationary rock at the shore. After the fish swims with constant acceleration
for 20.0 s, its velocity is v = (20.0i − 5.0j) m

s
. (a) What are the components of the

acceleration? (b) What is the direction of the acceleration with respect to the
fixed x axis? (c) Where is the fish at t = 25 s and in what direction is it moving?
[Ser4 4-7]
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(a) Since we are given that the acceleration is constant, we can use Eqs. 3.16:

vx = v0x + axt vy = v0y + ayt

to get:

ax =
vx − v0x

t
=

(20.0 m
s
− 4.0 m

s
)

20.0 s
= 0.80 m

s2

and

ay =
vy − v0y

t
=

(−5.0 m
s
− 1.0 m

s
)

20.0 s
= −0.30 m

s2

and the acceleration vector of the fish is

a = (0.80 m
s2

)i− (0.30 m
s2

)j .

(b) With the angle θ measured counterclockwise from the +x axis, the direction of the
acceleration a is:

tan θ =
ay

ax

=
−0.30

0.80
= −0.375

A calculator gives us:
θ = tan−1(−0.375) = −20.6◦

Since the y component of the acceleration is negative, this angle is in the proper quadrant.
The direction of the acceleration is given by θ = −20.6◦. (The same as θ = 360◦ − 20.6◦ =
339.4◦.

(c) We can use Eq. 3.17 to find the values of x and y at t = 25 s:

x = x0 + v0x + 1
2
axt

2

= 10m + 4.0 m
s
(25 s) + 1

2
(0.80 m

s2
)(25 s)2

= 360m

and

y = y0 + v0y + 1
2
ayt

2

= −4.0m + 1.0 m
s
(25 s) + 1

2
(−0.30 m

s2
)(25 s)2

= −72.8m

At t = 25 s the velocity components of the fish are given by:

vx = v0x + axt
= 4.0 m

s
+ (0.80 m

s2
)(25 s) = 24 m

s

and

vy = v0y + ayt
= 1.0 m

s
+ (−0.30 m

s2
)(25 s) = −6.5 m

s
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1.9 cm

30 m

y

x

Figure 3.1: Bullet hits target 1.9 cm below the aiming point.

so that at that time the speed of the fish is

v =
√

v2
x + v2

y

=
√

(24 m
s
)2 + (−6.5 m

s
)2 = 24.9 m

s

and the direction of its motion θ is found from:

tan θ =
vy

vx

=
−6.5

24
= −0.271

so that

θ = −15.2◦ .

Again, since vy is negative and vx is positive, this is the correct choice for θ. So the direction
of the fish’s motion is −15.2◦ from the +x axis.

3.2.4 Projectile Motion

5. A rifle is aimed horizontally at a target 30m away. The bullet hits the target
1.9 cm below the aiming point. (a) What is the bullet’s time of flight? (b) What
is the muzzle velocity? [HRW5 4-19]

(a) First, we define our coordinates. I will use the coordinate system indicated in Fig. 3.1,
where the origin is placed at the tip of the gun. Then we have x0 = 0 and y0 = 0. We also
know the acceleration:

ax = 0 and ay = −9.80 m
s2

= −g

What else do we know? The gun is fired horizontally so that v0y = 0, but we don’t know
v0x. We don’t know the time of flight but we do know that when x has the value 30m then
y has the value −1.9 × 10−2 m. (Minus!)
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Our equation for the y coordinate is

y = y0 + y0yt + 1
2
ayt

2

= 0 + 0 + 1
2
(−g)t2

= −
1
2
gt2

We can now ask: “At what time t does y equal −1.9 × 10−2 m?” . Substitute y = −1.9 ×

10−2 m and solve:

t2 = −
2y

g
= −

2(−1.9 × 10−2 m)

9.80 m
s2

= 3.9 × 10−3 s2

which gives:

t = 6.2 × 10−2 s

Since this is the time of impact with the target, the time of flight of the bullet is t =
6.2 × 10−2 s.

(b) The equation for x−motion is

x = x0 + v0xt + 1
2
axt

2

= 0 + v0xt + 0

= v0xt

From part (a) we know that when t = 6.2 × 10−2 s then x = 30m. This allows us to solve
for v0x:

v0x =
x

t
=

30m

6.2 × 10−2 s
= 480 m

s

The muzzle velocity of the bullet is 480 m
s
.

6. In a local bar, a customer slides an empty beer mug on the counter for a
refill. The bartender does not see the mug, which slides off the counter and
strikes the floor 1.40m from the base of the counter. If the height of the counter
is 0.860m, (a) with what speed did the mug leave the counter and (b) what was
the direction of the mug’s velocity just before it hit the floor? [Ser4 4-11]

(a) The motion of the beer mug is shown in Fig. 3.2(a). We choose the origin of our xy
coordinate system as being at the point where the mug leaves the counter. So the mug’s
initial coordinates for its flight are x0 = 0, y0 = 0.

At the very beginning of its motion through the air, the velocity of the mug is horizontal .
(This is because its velocity was horizontal all the time it was sliding on the counter.) So we
know that v0y = 0 but we don’t know the value of v0x. (In fact, that’s what we’re trying to
figure out!)
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vo

1.40 m

0.860 m

v

q

q

(a) (b)

x

y

Figure 3.2: (a) Beer mug slides off counter and strikes floor! (b) Velocity vector of the beer mug at the
time of impact.

We might begin by finding the time t at which the mug hit the floor. This is the time t at
which y = −0.860m (recall how we chose the coordinates!), and we will need the y equation
of motion for this; since v0y = 0 and ay = −g, we get:

y = v0yt + 1
2
ayt

2 = −
1
2
gt2

So we solve
−0.860m = −

1
2
gt2

which gives

t2 =
2(0.860m)

g
=

2(0.860m)

(9.80 m
s2

)
= 0.176 s2

so then
t = 0.419 s

is the time of impact.
To find v0x we consider the x equation of motion; x0 = 0 and ax = 0, so we have

x = v0xt .

At t = 0.419 s we know that the x coordinate was equal to 1.40m. So

1.40m = v0x(0.419 s)

Solve for v0x:

v0x =
1.40m

0.419 s
= 3.34 m

s

which tells us that the initial speed of the mug was v0 = 3.34 m
s
.

(b) We want to find the components of the mug’s velocity at the time of impact, that is, at
t = 0.419 s. Substitute into our expressions for vx and vy:

vx = v0x + axt = v0x = 3.34 m
s
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40o

22.0 m

25.0  m/s

Figure 3.3: Ball is thrown toward wall at 40◦ above horizontal, in Example 7.

and
vy = v0y + ayt = 0 + (−9.80 m

s2
)(0.419 s) = −4.11 m

s
.

So at the time of impact, the speed of the mug was

v =
√

v2
x + v2

y =
√

(3.34 m
s
)2 + (−4.11 m

s
)2 = 5.29 m

s

and, if as in Fig. 3.2(b) we let θ be the angle below the horizontal at which the velocity vector
is pointing, we see that

tan θ =
4.11

3.34
= 1.23 =⇒ θ = tan−1(1.23) = 50.9◦ .

At the time of impact, the velocity of the mug was directed at 50.9◦ below the horizontal.

7. You throw a ball with a speed of 25.0 m
s

at an angle of 40.0◦ above the horizontal
directly toward a wall, as shown in Fig. 3.3. The wall is 22.0m from the release
point of the ball. (a) How long does the ball take to reach the wall? (b) How far
above the release point does the ball hit the wall? (c) What are the horizontal
and vertical components of its velocity as it hits the wall? (d) When it hits, has
it passed the highest point on its trajectory? [HRW5 4-28]

(a) We will use a coordinate system which has its origin at the point of firing, which we take
to be at ground level.

What is the mathematical condition which determines when the ball hits the wall? It is
when the x coordinate of the ball is equal to 22.0m. Then let’s write out the x−equation of
motion for the ball. The ball’s initial x− velocity is

v0x = v0 cos θ0 = (25.0 m
s
) cos 40.0◦ = 19.2 m

s

and of course ax = 0, so that the x motion is given by

x = x0 + voxt + 1
2
axt

2 = 19.2 m
s
t
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We solve for the time at which x = 22.0m:

x = 19.2 m
s
t = 22.0m =⇒ t =

22.0m

19.2 m
s

= 1.15 s

The ball hits the wall 1.15 s after being thrown.

(b) We will be able to answer this question if we can find the y coordinate of the ball at the
time that it hits the wall, namely at t = 1.15 s.

We need the y equation of motion. The initial y velocity of the ball is

v0y = v0 sin θ0 =
(

25.0 m
s

)

sin 40.0◦ = 16.1 m
s

and the y acceleration of the ball is ay = −g giving:

y = y0 + v0yt + 1
2
ayt

2 =
(

16.1 m
s

)

t − 1
2
gt2

which we use to find the y coordinate at t = 1.15 s:

y = (16.1 m
s
)(1.15 s) − 1

2
(9.80 m

s2
)(1.15 s)2 = 12.0m

which tells us that the ball hits the wall at 12.0m above the ground level (above the release
point).

(c) The x and y components of the balls’s velocity at the time of impact, namely at t = 1.15 s
are found from Eqs. 3.16:

vx = v0x + axt = 19.2 m
s

+ 0 = 19.2 m
s

and
vy = v0y + ayt = 16.1 m

s
+ (−9.80 m

s2
)(1.15 s) = +4.83 m

s
.

(d) Has the ball already passed the highest point on its trajectory? Suppose the ball was
on its way downward when it struck the wall. Then the y component of the velocity would
be negative, since it is always decreasing and at the trajectory’s highest point it is zero. (Of
course, the x component of the velocity stays the same while the ball is in flight.) Here we
see that the y component of the ball’s velocity is still positive at the time of impact. So the
ball was still climbing when it hit the wall; it had not reached the highest point of its (free)
trajectory.

8. The launching speed of a certain projectile is five times the speed it has at its
maximum height. Calculate the elevation angle at launching. [HRW5 4-32]

We make a diagram of the projectile’s motion in Fig. 3.4. The launch it speed is v0, and
the projectile is launched at an angle θ0 upward from the horizontal.

We might start this problem by solving for the time it takes the projectile to get to maxi-
mum height, but we can note that at maximum height, there is no y velocity component, and
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v0

Speed  is  v0 / 5

q0

Figure 3.4: Motion of projectile in Example 8.

the x velocity component is the same as it was when the projectile was launched . Therefore
at maximum height the velocity components are

vx = v0 cos θ0 and vy = 0

and so the speed of the projectile at maximum height is v0 cos θ0.
Now, we are told that the launching speed (v0) is five times the speed at maximum height.

This gives us:

v0 = 5v0 cos θ0 =⇒ cos θ0 =
1

5

which has the solution

θ0 = 78.5◦

So the elevation angle at launching is θ0 = 78.5◦.

9. A projectile is launched from ground level with speed v0 at an angle of θ0 above
the horizontal. Find: (a) the maximum height H attained by the projectile,
and (b) the distance from the starting point at which the projectile strikes the
ground; this is called the range R of the projectile.

Comment: This problem is worked in virtually every physics text, and it is sometimes
simply called “The Projectile Problem”. I include it in this book for the sake of completeness
and so that we can use the results if we need them later on. I do not treat it as part of the
fundamental material of this chapter because it is a very particular application of free–fall
motion. In this problem, the projectile impacts at the same height as the one from which
it started, and that is not always the case. We must think about all projectile problems
individually and not rely on simple formulae to plug numbers into!

The path of the projectile is shown in Fig. 3.5. The initial coordinates of the projectile
are

x0 = 0 and y0 = 0 ,



3.2. WORKED EXAMPLES 65

R

Hv0

q0

y

x

Figure 3.5: The common projectile problem; projectile is shot from ground level with speed v0 and angle
θ0 above the horizontal.

the components of the initial velocity are

v0x = v0 cos θ0 and v0y = v0 sin θ0

and of course the (constant) acceleration of the projectile is

ax = 0 and ay = −g = −9.80 m
s2

Then our equations for x(t), vx(t), y(t) and vy(t) are

vx = v0 cos θ0

x = v0 cos θ0 t

vy = v0 sin θ0 − gt

y = v0 sin θ0 t − 1
2
gt2

(a) What does it mean for the projectile to get to “maximum height”? This is when it is
neither increasing in height (rising) nor decreasing in height (falling); the vertical component
of the velocity at this point is zero. At this particular time then,

vy = v0 sin θ0 − gt = 0

so solving this equation for t, the projectile reaches maximum height at

t =
v0 sin θ0

g
.

How high is the projectile at this time? To answer this, substitute this value of t into
the equation for y and get:

y = v0 sin θ0

(

v0 sin θ0

g

)

−
1
2
g

(

v0 sin θ0

g

)2

=
v2

0 sin2 θ0

g
−

v2
0 sin2 θ0

2g

=
v2

0 sin2 θ0

2g
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This is the maximum height attained by the projectile:

H =
v2

0 sin2 θ0

2g

(b) What is the mathematical condition for when the projectile strikes the ground (since that
is how we will find the range R)? We know that at this point, the projectile’s y coordinate
is zero:

y = v0 sin θ0 t− 1
2
gt2 = 0

We want to solve this equation for t; we can factor out t in this expression to get:

t(v0 sin θ0 −
1
2
gt) = 0

which has two solutions:

t = 0 and t =
2v0 sin θ0

g

The first of these is just the time when the projectile was fired; yes, y was equal to zero
then, but that’s not what we want! The time at which the projectile strikes the ground is

t =
2v0 sin θ0

g
.

We want to find the value of x at the time of impact. Substituting this value of t into
our equation for x(t), we find:

x = v0 cos θ0

(

2v0 sin θ0

g

)

=
2v2

0 sin θ0 cos θ0

g

This value of x is the range R of the projectile.
We can make this result a little simpler by recalling the trig relation:

sin 2θ0 = 2 sin θ0 cos θ0 .

Using this in our result for the range gives:

R =
2v2

0 sin θ0 cos θ0

g
=

v2
0 sin 2θ0

g

10. A projectile is fired in such a way that its horizontal range is equal to three
times its maximum height. What is the angle of projection? [Ser4 4-23]

Now, this problem does deal with a projectile which starts and ends its flight at the same
height, just as we calculated in the previous example. So we can use the results for the range
R and maximum height H that we found there.
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Figure 3.6: Volcanic bombs away!

The problem tells us that R = 3H. Substituting the expressions for H and R that we
found in the last example (we pick the first expression we got for R), we get:

R =
2v2

0 sin θ0 cos θ0

g
= 3H = 3

(

v2
0 sin2 θ0

2g

)

Cancelling stuff, we get:

2 cos θ0 =
3

2
sin θ0 =⇒ tan θ0 =

4

3

The solution is:

θ0 = tan−1(4/3) = 53.1◦

The projectile was fired at 53.1◦ above the horizontal.

11. During volcanic eruptions, chunks of solid rock can be blasted out of a
volcano; these projectiles are called volcanic bombs. Fig. 3.6 shows a cross section
of Mt. Fuji in Japan. (a) At what initial speed would the bomb have to be
ejected, at 35◦ to the horizontal, from the vent at A in order to fall at the foot
of the volcano at B? (Ignore the effects of air on the bomb’s travel.) (b) What
would be the time of flight? [HRW5 4-42]

(a) We use a coordinate system with its origin at point A (the volcano “vent”); then for the
flight from the vent at A to point B, the initial coordinates are x0 = 0 and y0 = 0, and the
final coordinates are x = 9.40 km and y = −3.30 km. Aside from this, we don’t know the
initial speed of the rock (that’s what we’re trying to find) or the time of flight from A to B.
Of course, the acceleration of the rock is given by ax = 0, ay = −g.

We start with the x equation of motion. The initial x−velocity is

v0x = v0 cos θ
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where θ = 35◦ so the function x(t) is

x = x0 + v0xt + 1
2
axt

2

= 0 + v0 cos θt + 0

= v0 cos θ t

Now, we do know that at the time of impact x had the value x = 9.40 km so if we now let t
be the time of flight, then

(9.40 km) = v0 cos θt or t =
(9.40 km)

v0 cos θ
(3.25)

Next we look at the y equation of motion. Since v0y = v0 sin θ we get:

y = y0 + v0yt + 1
2
ayt

2

= 0 + v0 sin θt − 1
2
gt2

= v0 sin θ t − 1
2
gt2

But at the time t of impact the y coordinate had the value y = −3.30 km. If we also
substitute for t in this expression using Eq. 3.25 we get:

−3.30 km = v0 sin θ

(

9.40 km

v0 cos θ

)

−
1
2
g

(

9.40 km

v0 cos θ

)2

= (9.40 km) tan θ −
g(9.40 km)2

2v2
0 cos2 θ

At this point we are done with the physics problem. The only unknown in this equation
is v0, which we can find by doing a little algebra:

g(9.40 km)2

2v2
0 cos2 θ

= (9.40 km) tan θ + 3.30 km

= 9.88 km

which gives:

v2
0 =

g(9.40 km)2

cos2 θ(9.88 km)

=
g(0.951 km)

cos2 θ

=
(9.80 m

s2
)(951m)

cos2 35◦

= 1.39 × 104 m2

s2

and finally
v0 = 118 m

s
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Figure 3.7: Projectile is fired up an incline, as described in Example 12

(b) Having v0 in hand, finding t is easy. Using our result from part(a) and Eq. 3.25 we find:

t =
(9.40 km)

v0 cos θ
=

(9400m)

(118 m
s
) cos 35◦

= 97.2 s

The time of flight is 97.2 s.

12. A projectile is fired up an incline (incline angle φ) with an initial speed v0

at an angle θ0 with respect to the horizontal (θ0 > φ) as shown in Fig. 3.7. (a)
Show that the projectile travels a distance d up the incline, where

d =
2v2

0 cos θ0 sin(θ0 − φ)

g cos2 φ

(b) For what value of θ0 is d a maximum, and what is the maximum value? [Ser4

4-56]

(a) This is a relatively challenging problem, and of course it is completely analytic.
We can start by writing down equations for x and y as functions of time. By now we can

easily see that we have:
x = v0 cos θ0 t

y = v0 sin θ0 t− 1
2
gt2

We can combine these equations to get a relation between x and y for points on the trajectory;
from the first, we have t = x/(v0 cos θ0), and putting this into the second one gives:

y = v0 sin θ0

(

x

v0 cos θ0

)

−
1
2
g
(

x

v0 cos θ0

)2

= (tan θ0)x−
g

2

x2

v2
0 cos2 θ0

What is the condition for the time that the projectile hits the slope? Unlike the problems
where a projectile impacts with the flat ground or a wall, we don’t know the value of x or y
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at impact. But since the incline has a slope of tan φ, the relation between x and y for points
on the slope is

y = (tan φ)x .

These two relations between x and y allow us to solve for the values of x and y where
the impact occurs. Substituting for y above, we find:

(tanφ)x = (tan θ0)x−
g

2

x2

v2
0 cos2 θ0

A little rearranging gives:

g

2

x

v2
0 cos2 θ0

+ (tan φ − tan θ0) = 0

and the solution for x is:

x =
2v2

0 cos2 θ0(tan θ0 − tanφ)

g

The problem has us solve for the distance d up the slope; this distance is related to the
impact value of x by:

d =
x

cos φ

and this gives us:

d =
x

cosφ
=

2v2
0 cos2 θ0(tan θ0 − tan φ)

g cos φ
.

Although this is a perfectly good expression for d, it is not the one presented in the
problem. (Among other things, it has another factor of cos φ downstairs.) If we multiply
top and bottom by cos φ we find:

d =
2v2

0 cos2 θ0 cos φ(tan θ0 − tanφ)

g cos2 φ

=
2v2

0 cos θ0(cos θ0 cos φ tan θ0 − cos θ0 cosφ tan φ)

g cos2 φ

=
2v2

0 cos θ0(cos φ sin θ0 − cos θ0 sinφ)

g cos2 φ

And now using an angle–addition identity from trigonometry in the numerator, we arrive at

d =
2v2

0 cos θ0 sin(θ0 − φ)

g cos2 φ

which is the preferred expression for d.

(b) In part (a) we found the up–slope impact distance as a function of launch angle θ0. (The
launch speed v0 and the slope angle φ are taken to be fixed.) For a certain value of theta0,
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this function d(θ0) will take on a maximum value. To find this value, we differentiate the
function d(θ0) and set the derivative equal to zero. We find:

d′(θ0) =
2v2

0

g cos2 φ

d

dθ0
[cos θ0 sin(θ0 − φ)]

=
2v2

0

g cos2 φ
[− sin θ0 sin(θ0 − φ) + cos θ0 cos(θ0 − φ)]

=
2v2

0

g cos2 φ
cos(2θ0 − φ)

where in the last step we used the trig identity cos α cos β − sinα sinβ = cos(α + β).
Now, to satisfy d′(θ0) = 0 we must have cos(2θ0 − φ) = 0. While this equation has

infinitely many solutions for θ0, considering the values that θ0 and φ may take on, we see
that we need only look at the case where

2θ0 − φ =
π

2

which of course, does solve the equation. This gives us:

θ0 =
π

4
+

φ

2

for the value of θ which makes the projectile go the farthest distance d up the slope.
To find what this value of d is, we substitute for θ0 in our function d(θ0). We find:

dmax =
2v2

0

g cos2 φ
cos

(

π

4
+

φ

2

)

sin

(

π

4
+

φ

2
− φ

)

=
2v2

0

g cos2 φ
cos

(

π

4
+

φ

2

)

sin

(

π

4
−

φ

2

)

This expression is correct but it can be simplified. We use the trig identity which states:

sin α cos β = 1
2
sin(α + β) + 1

2
sin(α − β)

this gives us:

sin

(

π

4
−

φ

2

)

cos

(

π

4
+

φ

2

)

= 1
2
sin

(

π

2

)

+ 1
2
sin(−φ)

= 1
2
−

1
2
sin φ

= 1
2
(1 − sinφ)

which is a lot simpler. Using this result in our expression for dmax gives:

dmax =
2v2

0

g cos2 φ

(1 − sinφ)

2
=

v2
0(1 − sinφ)

g(1 − sin2 φ)
=

v2
0

g(1 + sinφ)

which is a simple as it’s going to get!
We can check result for a couple well–known cases. If φ = 0 we are dealing with the

common projectile problem on level ground for which we know we get maximum range when

θ0 = 45◦ and from our solution for that problem we get R =
v2

0

g
. If φ = 90◦ we have the

problem of a projectile fired straight up; one can show that the maximum height reached is

H =
v2

0

2g
which again agrees with the formula we’ve derived.
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3.2.5 Uniform Circular Motion

13. In one model of the hydrogen atom, an electron orbits a proton in a circle
of radius 5.28 × 10−11 m with a speed of 2.18 × 106 m

s
. (a) What is the acceleration

of the electron in this model? (b) What is the period of the motion? [HRW5 4-57]

(a) The electron moves in a circle with constant speed. It is accelerating toward the center

of the circle and the acceleration has magnitude acent = v2

r
. Substituting the given values,

we have:

acent =
v2

r
=

(2.18 × 106 m
s
)2

(5.28 × 10−11 m)
= 9.00 × 1022 m

s2

The acceleration has magnitude 9.00 × 1022 m
s2

.

(b) As the electron makes one trip around the circle of radius r, it moves a distance 2πr (the
circumference of the circle). If T is the period of the motion, then the speed of the electron
is given by the ratio of distance to time,

v =
2πr

T
which gives... T =

2πr

v

which shows why Eq. 3.22 is true. Substituting the given values, we get:

T =
2π(5.28 × 10−11 m)

(2.18 × 106 m
s
)

= 1.52 × 10−16 s

The period of the electron’s motion is 1.52 × 10−16 s.

14. A rotating fan completes 1200 revolutions every minute. Consider a point
on the tip of a blade, at a radius of 0.15m. (a) Through what distance does the
point move in one revolution? (b) What is the speed of the point? (c) What is
its acceleration? (d) What is the period of the motion? [HRW5 4-63]

(a) As the fan makes one revolution, the point in question moves through a circle of radius
0.15m so the distance it travels is the circumference of that circle, i.e.

d = 2πr = 2π(0.15m) = 0.94m

The point travels 0.94m.

(b) If in one minute (60 s) the fan makes 1200 revolutions, the time to make one revolution
must be

Time for one rev = T =
1

1200
· (1.00min) =

1

1200
· (60.0 s) = 5.00 × 10−2 s

Using our answer from part (a), we know that the point travels 0.94m in 5.000 × 10−2 s,
moving at constant speed. Therefore that speed is:

v =
d

T
=

0.94m

5.000 × 10−2 s
= 19 m

s
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vWG= -0.5 m/s

vSW= +1.2 m/s

vWG= -0.5 m/s

vSW= -1.2 m/s

(a) (b)

x

Figure 3.8: (a) Velocities for case where swimmer swims upstream. (b) Velocities for case where swimmer
swims downstream.

(c) The point is undergoing uniform circular motion; its acceleration is always toward the

center and has magnitude acent = v2

r
. Substituting,

acent =
v2

r
=

(19 m
s
)2

(0.15m)
= 2.4 × 103 m

s2

(d) The period of the motion is the time for the fan to make one revolution. And we already
found this in part (b)! It is:

T = 5.00 × 10−2 s

3.2.6 Relative Motion

15. A river has a steady speed of 0.500 m
s
. A student swims upstream a distance

of 1.00 km and returns to the starting point. If the student can swim at a speed
of 1.20 m

s
in still water, how long does the trip take? Compare this with the time

the trip would take if the water were still. [Ser4 4-43]

What happens if the water is still? The student swims a distance of 1.00 km “upstream”
at a speed of 1.20 m

s
; using the simple distance/time formula d = vt the time for the trip is

t =
d

v
=

1.0 × 103 m

1.20 m
s

= 833 s

and the same is true for the trip back “downstream”. So the total time for the trip is

833 s + 833 s = 1.67 × 103 s = 27.8min

Good enough, but what about the case where the water is not still? And what does
that have to do with relative velocities? In Fig. 3.8, the river is shown; it flows in the −x
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direction. At all times, the velocity of the water with respect to the ground is

vWG = −0.500 m
s

.

When the student swims upstream, as represented in Fig. 3.8(a), his velocity with respect to

the water is
vSW = +1.20 m

s
.

We know this because we are given his swimming speed for still water.
Now we are interested in the student’s velocity with respect to the ground , which we will

call vSG. It is given by the sum of his velocity with respect to the water and the water’s
velocity with respect to the ground:

vSG = vSW + vWG = +1.20 m
s
− 0.500 m

s
= 0.70 m

s

and so to cover a displacement of ∆x = 1.00 km (measured along the ground!) requires a
time

∆t =
∆x

vSG
=

1.00 × 103 m

0.70 m
s

= 1.43 × 103 s

Then the student swims downstream (Fig. 3.8(b)) and his velocity with respect to the
water is

vSW = −1.20 m
s

giving him a velocity with respect to the ground of

vSG = vSW + vWG = −1.20 m
s
− 0.500 m

s
= 1.70 m

s

so that the time to cover a displacement of ∆x = −1.00 km is

∆t =
∆x

vSG

=
(−1.00 × 103 m)

(−1.70 m
s
)

= 5.88 × 102 s

The total time to swim upstream and then downstream is

tTotal = tup + tdown

= 1.43 × 103 s + 5.88 × 102 s = 2.02 × 103 s = 33.6min .

16. A light plane attains an airspeed of 500 km/hr. The pilot sets out for a
destination 800 km to the north but discovers that the plane must be headed
20.0◦ east of north to fly there directly. The plane arrives in 2.00hr. What was
the wind velocity vector? [HRW5 4-83]

Whoa! What the Hell is this problem talking about???
When a plane flies in air which itself is moving (i.e. there is a wind velocity) there are

three (vector) velocities we need to think about; I will refer to them as:
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Figure 3.9: (a) Vectors for the planes velocity with respect to the ground (vPG) and with respect to the
moving air (vPA). (b) The sum of the plane’s velocity relative to the air and the wind velocity gives the
plane’s velocity with respect to the ground, vPG.

vPA: Velocity of the plane with respect to the air. The magnitude of this vector is the
“airspeed” of the plane. (This is the only thing that a plane’s “speedometer” can really
measure.)

vAG: Velocity of the air with respect to the ground. This is the wind velocity.
vPG: Velocity of the plane with respect to the ground. This is the quantity which tells

us the rate of (ground!) travel of the plane.
These three vectors are related via:

vPG = vPA + vAG

The first thing we are given in this problem is that the magnitude of vPA is 500 km/hr.
The plane needs to fly due north and this tells us that vPG (the real direction of motion of
the plane) points north (along the y axis). We are then told that the plane’s “heading” is
20.0◦ east of north, which tells us that the direction of vPA lies in this direction. These facts
are illustrated in Fig. 3.9(a).

Now if the plane travels 800 km in 2.00hr then its speed (with respect to the ground!) is

vPG =
800km

2.00hr
= 400 km

hr
.

which we note in Fig. 3.9(b). Since we now have the magnitudes and and directions of vPA

and vPG we can compute the wind velocity,

vAG = vPG − vPA

The x component of this vector is

vAG,x = 0 − 500 km
hr

sin 20.0◦ = −171 km
hr

and its y component is

vAG,y = 400 − 500 km
hr

cos 20.0◦ = −69.8 km
hr
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So the wind velocity is
vAG = −171 km

hr
i − 69.8 km

hr
j

If we want to express the velocity as a magnitude and direction, we find:

vAG =
√

(−171 km
hr

)2 + (−69.8 km
hr

)2 = 185 km
hr

so the wind speed is 185 km
hr

. The direction of the wind, measured as an angle θ counter-
clockwise from the east is found from its components:

tan θ =
−69.8

−171
= 0.408 =⇒ θ = tan−1(0.408) = 202◦

(Here we have made sure to get the angle right! Since both components are negative, θ lies
in the third quadrant!) Since 180◦ would be due West and the wind direction is 22◦ larger
than that, we can also say that the wind direction is “22◦ south of west”.


